

IDU Workshop Presentation 2002

Application of Generalized Tikhonov Regularization to Earth Ecosystem Data-Model Fusion

A. J. Meade
Department of Mechanical Engineering
and Materials Science
Rice University

URL: www.ruf.rice.edu/~meade

We are developing a method using Generalized Tikhonov Regularization (GTR) and Support Vector Machines (SVM) for seamlessly fusing a-priori models and multi-dimensional observable data from Earth Science problems.

The accurate and efficient formation of multi-dimensional functions from observable data is of considerable importance in engineering and has a number of immediate applications which include:

- Data acquisition
- Classification
- Controls
- Image recognition

This is the promise of artificial neural networks (ANNs) as applied to engineering

$$f_{a}(\underline{X}) \cong \sum d_{j} \mathbf{y}_{j} \left(\sum b_{k} \mathbf{y}_{k}(\underline{X}) \right)$$

However, the approximation of a function $F(\underline{x})$ by a general weighted series of bases $f_{\underline{x}}(\underline{x})$ is an *ill-posed* problem.

Say our desired approximation minimizes the following objective function,

$$\frac{1}{2}\sum_{k}^{S} \left(F_{e}(\underline{x}_{k}) - f_{a}(\underline{x}_{k})\right)^{2} = \left\|\underline{F}_{e} - \underline{f}_{a}\right\|_{2}^{2}$$

where $F_e(\underline{x}) = F(\underline{x}) + m(\underline{x})$

Specifically, there are an infinite combination of parameters in $f_a(\underline{x})$ that can work and minute perturbations to the input or output, \boldsymbol{n} , can result in large changes in the approximation.

This ill-posed problem explains why ANNs can have trouble converging even after one has settled on

- The architecture
- The number of hidden layers
- The type of transfer function
- The number of nodes

A combined remedy is to constrain the parameters and transfer functions to form well-behaved basis functions, e.g.,

$$f_a(\underline{x}) \cong \sum c_i \Phi_i(\boldsymbol{a}_i \underline{x} - \boldsymbol{q}_i)$$

and to apply *regularization*. The most common and well-known form is that of Tikhonov regularization,

$$\underline{f_a} = \operatorname{argmin} \left\{ \frac{1}{2} \left\| \underline{F_e} - \underline{f_a} \right\|_2^2 + \mathbf{h}^2 \left\| \mathbf{A} \underline{f_a} - \mathbf{A} \underline{g} \right\|_2^2 \right\}$$

where \underline{g} is the vector form of the a-priori function, \underline{n} is the regularization parameter and A is either the identity matrix or a discrete approximation of a linear derivative operator.

In our Generalized Tikhonov regularization (GTR) we are not limited to the L2 norm and we can utilize nonlinear differential operators $L[\]$ in energy form,

 $\min \left\{ \frac{1}{2} \left\| \underline{F_e} - \underline{f_a} \right\|_Y^2 + \frac{1}{2} \mathbf{I} \Lambda (f_a, g) \right\}$

In our approach to GTR, we keep the L2 norm and directly solve the optimization problem for $f_a\left(\underline{x}\right)$, i.e.

$$f_a(\underline{x}) = g(\underline{x}) + \sum_i G(\underline{x}, \underline{x}_i) c_i \text{ where } \underline{c} = [\mathbf{G} + \mathbf{I}\mathbf{I}]^{-1} (\underline{F}_{\underline{e}} - \underline{g})$$

and where $G(\underline{x},\underline{x}_i)$ is the Green's function (GF) for the differential operator $L[\]$.

The positive scalar \boldsymbol{I} is such that $\left\|\underline{F_e} - \underline{f_a}\right\|_Y^2 \leq \boldsymbol{r}$, which satisfies our original GTR objective function.

However, the true optimal $m{I}$ is

$$I^* = \frac{\left\|\mathbf{G} \, \underline{\mathbf{m}}\right\|_2}{\left\|\underline{F} - \underline{g}\right\|_2} \le \frac{\left\|\mathbf{G} \, \right\|_2 \, \left\|\underline{\mathbf{m}}\right\|_2}{\left\|\underline{F} - \underline{g}\right\|_2}$$

and since G is positive definite then as $g(\underline{x}) \to F(\underline{x})$, $I^* \to \infty$ and as $n(\underline{x}) \to 0$, $I^* \to 0$.

To summarize, with the GTR formulation:

$$f_a(\underline{x}) = g(\underline{x}) + \sum_i G(\underline{x}, \underline{x}_i) c_i \text{ where } \underline{c} = [\mathbf{G} + \mathbf{I}\mathbf{I}]^{-1} (\underline{F}_e - \underline{g})$$

- $g(\underline{x})$ is the a-priori information and can be which can be a physics based numerical model, analytical solution, statistical correlation, other empirical data, or even other intelligent system models (ANNs, Fuzzy-Neural Networks, etc.).
- $G(\underline{X},\underline{X}_i)$ is the Green's function for the differential operator $L[\]$.
- I can range from 0 to ∞ and is dependent on G, $m(\underline{x})$, and $(F(\underline{x})-g(\underline{x}))$.

In our application of GTR to ES and engineering, we make use of a variant of the SVM to finally form well-behaved bases. This SVM variant minimizes the length of the vector \underline{c} and implicitly solves for \underline{l}^* by satisfying the user criteria,

$$\left\| \underline{F_e} - \underline{f_a} \right\|_Y^2 \le \mathbf{r}$$

The SVM operates from

min
$$\{G_{\underline{c}} - (F_{e} - g)\}$$
 s.t. N < S

Approach / Our SVM Algorithm

Our SVM solution for \underline{c} borrows from previous work on "mesh-free" finite elements.

Minimize $\langle (\underline{R}_{k-1} - a_k \underline{G}_k), (\underline{R}_{k-1} - a_k \underline{G}_k) \rangle$ for basis parameters.

Solve
$$c_k = \frac{\left\langle \underline{G}_k, \underline{R}_{k-1} \right\rangle}{\left\langle \underline{G}_k, \underline{G}_k \right\rangle}$$
 and update $\underline{R}_k = \underline{R}_{k-1} - c_k \underline{G}_k$, where

$$a_k = \left\| \underline{R}_{k-1} \right\|_{\infty}$$
 and $\left[\underline{G}_1, \dots, \underline{G}_k, \dots, \underline{G}_N \right]^{\mathrm{T}} = \mathbf{G}$.

Approach / Our SVM Algorithm

This relatively painless approach

- Minimizes the length of \underline{c} like conventional SVM training.
- Requires only one user-determined parameter $m{t} \leq \left\| \underline{F_e} \underline{f_a}
 ight\|_{\scriptscriptstyle \infty}$.
- Avoids matrix manipulation.
- Requires only the storage of the sample vectors \underline{X}_i and residual vector \underline{R}_{k-1} .
- Input vectors don't have to be normalized.

Approach / GTR with SVM

Levels of GTR applied to ES and engineering:

$$\min \left\{ \mathbf{G} \, \underline{c} - \left(\underline{F}_{\underline{e}} - \underline{g} \right) \right\} \text{ s.t. } N < S$$

- 1. 'I haven't a clue.' Set $g(\underline{x})$ to zero and $G(\underline{x},\underline{x}_i)$ to an infinitely differentiable function.
- 2. 'I think I know at least how F_e behaves wrt to at least one of the variables', e.g. time and the diffusion equation. Set $g(\underline{x}) = 0$ and $G(\underline{x}, \underline{x}_i)$ to the GF of the low fidelity solution.
- 3. 'I know what's going on but need to tune the model.' Use $g(\underline{x})$ and the GF for the model.

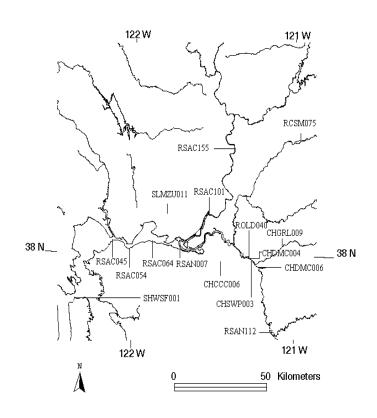
Applications of GTR with SVM

- Regression / Identification in an Earth Science Problem (Level 2)
- Regression / Identification in a Rotorcraft Health Monitoring System (Level 2)
- Prediction in a Rotorcraft Health Monitoring System (Level 2)
- Classification / Identification of Naval Rotorcraft Launch and Recovery (Level 1)
- Classification / Identification in a Transonic Cavity Flow Experiment (Level 1)

Regression / Identification in an Earth Science Problem

Inputs

- Δ Salinity 1 location
- Δ Stage 8 locations
- Δ Flow 6 locations
- **∆** Bias Moon phase illumination
- Outputs
 - ∆ Salinity 1 location at next time step
- Data set (1 Hr. interval)
 - Δ Training data set 1995-1997
 - ∆ Prediction data set 1997-1998



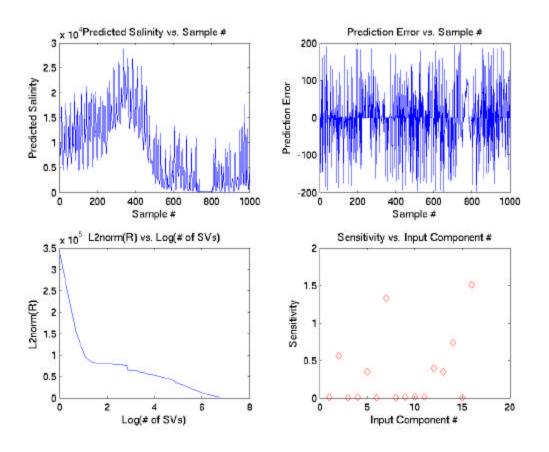
Regression / Identification in an Earth Science Problem

Our SVM model was trained using:

- 1000 sample points
- 16 inputs
- 1 output (water salinity)
- t = 200

Can we use an SVM model with Level 2 GTR/SVM to identify dependence in this spatial time-series problem?

Regression / Identification in an Earth Science Problem



SVM model of the salinity measured at the testing station. 1000 sample points #SV = 839

SVM Input Components

- 1. chgr1009-stage
- 2. flow-cfs-rsan112 (4)
- 3. stage-ft-rsan112
- 4. stage-feet-rsan007
- 5. rcsm075-flow-cfs (6)
- 6. rcsm075-stage-feet
- 7. flow-cfs-rsac155 (2)
- 8. stage-feet-rsac155

- 9. stage-feet-rsac101
- 10. slmzu011-stage
- 11. chc006
- 12. shwf001-stage (5)
- 13. chdmc00 (7)
- 14. chswp003 (3)
- 15. Moon Illumination
- 16. EC-rsac054 (1)

Conclusions / Future Work

The approach shows some promise. Further investigation of the method and the applications are required:

- Investigate the physical reasoning behind the sensitivity plots from the applications presented.
- Make the techniques more efficient for large numbers of input samples.
- Use more sophisticated optimization routines.
- Investigate other types of bases.